
© 2021 JETIR May 2021, Volume 8, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2105707 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f301

Adoption of Design Principles and Design

Patterns for Developing Software Application

R Prajna Prof.Kavitha S N

Dept. Of Information Science and & Engineering Dept. Of Information Science and Engineering

 RV College Of Engineering® RV College Of Engineering®

 Bengaluru, INDIA Bengaluru, INDIA

 prajna.rb93@gmail.com kavithasn@rvce.edu.in

Abstract - Design principles and design patterns play a

vital role in software development. Over recent years

research and development team from both academia and

industry have focused on issues related to handling

technical debt. Poor design and implementation choices

are main reason for high technical debt. Increase rate of

technical debt results in code smelling. Adopting suitable

design principles and correct design patterns plays a

major role to prevent the code smelling. Solving the design

problems that occur recurrently in object-oriented

software development, several design principles are

proposed. Proper understanding and implementing design

patterns help indirectly to achieve design principle. In this

paper we have briefly explained one of the widely used

“SOLID” design principles in object-oriented applications.

Discussed applied design patterns to accomplish “SOLID”

design principles in our project.

Keywords - technical debt, code smelling, design pattern,

design principles, object oriented.

I.INTRODUCTION

During implementation of the software application, it’s not

sufficient for code to work. Implementation features not

following the proper code structure will result in code

duplication, difficult for other developers to understand the

code and debugging is challenging. The demand for software

application with righteous object-oriented design structure is

common in industry and academia. Righteous design

structure guarantees application going to become more

“understandable, reusable, flexible and maintainable”.

Typically, developers design their applications using either

their own preferred styles or the framework followed in their

organisation. This procedure takes a long time to understand

and is difficult to maintain in the future. The major challenge

is to write the quality software by following good software

design practices.

For the last few decades, the object-oriented based software

design approach has become very common. Good objected

oriented design results in low coupling and high cohesion.

Number of design principles and design patterns are specified

to improve the design quality of object-oriented based

software applications [4]. Many real-time applications are

implemented using the object-oriented design patterns. In the

initial stage of development, it is very essential to understand

the features of design principles and design patterns.

One of the significant features of object-oriented program is

abstractions and reusability of functionalities. Initial stage of

development when developer follows their own way of

designing the program, many a time designs are not up to the

standard and lack of documentation. These may cause issues

at the later stages of development life cycle. Understanding

and adopting the proven design solutions is always a better

choice. In the object-oriented based software applications,

many design principles and design patterns are defined and

adopted in large scale.

Software design principles represents a set of guidelines that

help developers to avoid having a bad design [5]. Unlike

design patterns which are highly dependent on the project or

domain context, design principles are in general suitable for

designers assisting to obtain a shared understanding of overall

architecture of application [3]. Generally, design principles

provide best practises for designing software while keeping in

mind the project's long-term maintenance and expansion.

Object oriented based design principles generally demonstrate

the essence of a programming language concept. Couple of

proposed object-oriented design principles are Single

responsibility principle (SRP), Open Closed Principle, don’t

repeat yourself (DRY) [5], "You aren't gonna need it"

(YAGNI)

In software engineering adopting design patterns are widely

accepted as a good practice. A design pattern is proven

general repeatable solutions to a design problem with the

intention of making the solution reliable and reusable. To

implement in software development several design patterns

are proposed, and each design pattern offers the solution to a

specific problem. From the developer’s viewpoint design

pattern improves the code readability and maintainability [6].

In object-oriented applications, design pattern gives the

approach to address a recurrent design problem, also describes

the problem, and provides the hint when to apply it and post

implications.

Adopting the right design principles and design patterns is

very challenging, improper selection and forcefully trying to

add the design patterns may cause complexity in code

maintainability. The main goal of this paper is to explain the

effect of “SOLID” design principles, dependency injection

pattern and singleton design pattern to achieve the

abstractness, which indirectly impact on software quality of

our project. The project is named as Inpatient pharmacy

medication management.

This paper is categorized into total 6 sections. Section II

describes the literature survey, section III concepts of

“SOLID” design principles, Section IV describes the

implementation work, section V outlines the evaluation result

and section VI conclusion of the research work.

II.LITERATURE SURVEY

For the past three decades, the object-oriented procedure has

become the most common software design practice. Survey

paper [8] focused on describing significance of following

object-oriented design best practices. Based on survey authors

http://www.jetir.org/

© 2021 JETIR May 2021, Volume 8, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2105707 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f302

have come up with 49 design measures such as avoid

duplicates, avoid long methods etc which indirectly

contributes to build the design best practices while developing

the application.

Harmeet Singh, Syed Imtiyaz Hassan [9] described impact of

SOLID design principles on software quality. Overview of

“SOLID” principles and empirical analysis of these principles

by using a working prototype, applying the design principles

and later stage evaluated the prototype with measuring

metrics. Authors have focused on evaluating the quality using

CKJM metrices considering the cohesion and coupling

measurements in the payroll system application.

Patterns were first used in the field of architecture by

Christopher Alexander, who documented reusable

architectural plans for manufacturing high-quality designs [1].

Object-oriented software developers began to use themes in

the mid-1990s. The so-called GoF (Gang of Four, Gamma,

Helms, Johnson, and Vlisides) catalogued 23 design trends

aimed at addressing certain commonly-recurring object-

oriented design needs [2].

R.Subburaj Professor et al. [7] , focused on explaining the

advantage and disadvantage of design patterns for object

oriented based software development. Design pattern catalog

were described considering three basic classes of design

patterns: structural design patterns, creational design patterns

and behavioural design pattens. Authors have also proposed

different ways to select design patterns and avail those in

software development.

F. Khomh and Y. Guéhéneuc [10] proposed a qualitative

research on theory of design patterns actually applied to raise

the abstraction level of programming. Survey was Performed

mainly on types of patterns proposed by Gamma et al[2] , and

positive impacts and negative impacts of those design

patterns. Authors have explained impact of design patterns on

software quality as well as described other factors of software

engineering like development tools, knowledge sharing,

reverse engineering, forward engineering and documentation.

MU Huaxin, JIANG Shuai[6] focused on study of object

oriented design patterns in development of software. Observer

pattern , factory method pattern and decorator pattern were

considered for research work. Authors have referred these

design pattern from 23 design patterns theory mentioned by

Gamma ET al[2].Based on understanding of design patterns

working way design principles were suggested by researchers.

III. OVERVIEW OF DESIGN PRINCIPLES

Design principles are basic standards that help to create and

manage a software framework for software designers and

developers. Design principles help software architecture

beginners to eliminate pitfalls and mistakes in object-oriented

design.

To handle the design issues of application “SOLID” principles

provides right structure. “SOLID” design principles are

widely used in object-oriented based application design. In the

1990s Robert C. Martin defined and explained these principles

[12]. “SOLID” design principles provided greater scope for

developers to move from tightly coupled code to loosely

coupled code with encapsulation to meet the business

requirement properly.

SOLID is an acronym of the following,

S: Single Responsibility Principle (SRP)

O: Open closed Principle (OSP)

L: Liskov substitution Principle (LSP)

I : Interface Segregation Principle (ISP)

D: Dependency Inversion Principle (DIP)

3.1 Single Responsibility Principle (SRP)

The Single Responsibility Principle (SRP) is considered to be

no more than one reason for each Class to alter. Every class

should have one responsibility, class that has more than one

responsibility or chance of adding more responsibility to the

class indicates high coupling. High coupling may cause

unstable designs that can break down any conditions for

improvement in unpredictable ways.

3.2 Open Closed Principle (OSP)

According to this principle software entities namely modules,

classes or functions should be open for extension but it should

be closed for modification [9]. Alteration of single software

component may impact dependent components, as a result

there is a possibility of unacceptable program behaviour. The

program becomes compact, static, unstable and unrefusable.

This is solved in a very simple way by the open-closed theory.

According to OSP one can expand the actions of classes,

functions or modules by adding new features code but making

changes or updating to the existing code is not allowed.

3.3 Liskov Substitution Principle (LSP)

Liskov Substitution Principle (LSP) related to substitution

property. Functions or modules which going to use references

or pointers to super classes can be replaceable with its object

of child classes [9]. This shouldn’t break the application. This

is related to the substitution property.

3.4 Interface Segregation Principle (ISP)

Modification in an unrelated interface will result in the client

code being modified unintentionally. This leads to coupling of

all the clients. Cohesive interfaces which can be derived from

abstract classes is better approach, Interface Segregation

Principle (ISP) says the same.

3.5 Dependency Inversion Principle (DIP)

Dependency of high-level model on lower-level modules is

not a good programming practice. Through abstractions they

can depend on. Abstractions should not depend on details,

rather details should depend upon abstractions. Adding an

abstraction layer in order to separate the higher-level modules

from lower-level modules is a solution [9]. We need to

separate this abstraction from the problem's details in order to

adhere to the concept of dependency inversion.

IV. IMPLEMENTATION

In order to further comprehend adopting “SOLID” design

principles and design patterns to achieve these principles, we

have taken up project on pharmacy management for inpatient.

Application is developed in .NET framework and

programming language is C#. Basically, followed the object-

oriented pattern while designing the application development.

To avoid facing the common design flaws like placing more

responsivities on single class, tight coupling between the other

classes followed below steps.

http://www.jetir.org/

© 2021 JETIR May 2021, Volume 8, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2105707 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f303

4.1Choosing the design principles

Compare with the design principles like Don’t repeat yourself

(DRY), Keep it simple stupid (KISS), however SOLID

principles benefits are suitable for real time applications and

advantages are evidently and easily reflected.

Application consists of many classes such as Patient

Demographics, Patient Allergy, Patient clinical notes, Patient

medication dose and Patient dose calculation class. All classes

exhibit single responsibility. Each class implements the

interface which indirectly achieves the open closed principle.

Example the class named cPatientDose closed for adding the

methods related to dosage time interval calculation, but open

for adding the functionalities like quantity per dose, indicator

used in dose calculation.

The main challenge is to implement the dependency inversion

between every class which contains the several methods

within it. According to dependency inversion principle higher

level modules and lower-level modules must communicate

through abstractions. Abstraction shouldn’t depend on the

details rather details should depend on abstractions [12].

Development started with realizing “SOLID” design

principles primary approach, below are the list of those

➢ Creating more classes and made sure every class has

single responsibility to handle.

➢ Created the abstract types i.e., interfaces and abstract

class wherever there is scope to add abstraction.

➢ Followed to implement the class with small cohesive

types

Fig.1. shows the activities we have implemented to follow the

design principles in our work. To achieve the dependency

inversion principle and to reduce the coupling between the

classes we have adopted design patterns.

Fig. 1 Implementation approach followed for

“SOLID” principles

4.2 Choosing correct design patterns to address the design

issues

A design pattern describes the core features of a typical design

structure that make it useful for designing reusable object-

oriented designs by naming, abstracting, and identifying them.

It identifies the classes and their instances, as well as their

tasks and collaborations, and the responsibility allocation.

Each design pattern focuses on a recurring design problem

which occurs while implementing object-oriented design

structure. We have chosen below design patterns to solve and

implement the design problem occurred during development.

4.2.1 Factory Method Pattern

The Factory Method Pattern specifies instant of object is

created through interface but subclasses that is factory class

decides which class to instantiate [2]. Factory Method lets a

class defer instantiation to subclasses. This comes under the

creational pattern section of Gang of Four (GOF) [2].

In our application, there is a scenario in which client class i.e.,

consumer class can create the instance of the other dependent

classes without knowing the details of how they are created.

Fig 2 indicates the scenario of factory pattern method

implemented for suggested dose route. Dose route basically

indicates the path by which medication is taken into the body

through oral, nasal inhalation, mouth inhalation or buccal.

• ConcretePatientDoseRoute indicates the different

medication consumption route classes.

• Those Classes implement methods declared in interface

IPatientDoseRoute.

• The cPatientDoseRouteFactory is responsible for creating

one or more concretePatientDoseRoute.This subclass has

the knowledge of creating instance of patient dose route.

• The consumer class cPatientDoseCalculator will create

object of factory class instead of concrete class, through

factory class refers the implementation of methods in

concrete class.

Fig. 2 Class Diagram for Factory Method Pattern

Same way we have implemented other scenarios in the

application wherever there is scope of implementing factory

method pattern.

4.2.2 Dependency Injection (DI) Design Pattern

Dependency injection design pattern provides a technique to

create applications that are loosely coupled. Dependent

objects can be injected into class through methods, properties

or constructor [13].

Adopting interfaces-based implementation, & communication

between the higher level and lower-level classes through

abstractions improves the reusability of code. But still

instantiation of lower-level classes has to be done at

someplace. The client class will depend on interface instead of

depending on concrete classes. This makes even easier to use

classes which has different implementation for same methods

in interfaces. Next introducing injector class which basically

http://www.jetir.org/

© 2021 JETIR May 2021, Volume 8, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2105707 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f304

sets the instant of lower-level class to higher level class either

through a constructor, property or a method.

In our application we have accessed data from different

sources. Consider Fig.3 in which client class is using service

classes via interface reference to get the required data. Rather

than directly creating objects of classes, interfaces are used.

These service class instance will be created in the injector

class. So, constructor dependency injection pattern provides

the objects reference. DI accomplishes complete decoupling

between these two client and service classes.

• The cPatientService class is the injector class, which sets

the object of a service classes to the PatientBuisnessLogic

class i.e., client class.

• cPatientBuisnessLogic class instead of directly creating

instance of service class, via interface IPatientData gets

object reference.

• Constructor injection pattern used to provide the

dependency through injector class.

Fig. 3 Class diagram for dependency injection pattern

4.2.3 Singleton Design Pattern

The singleton design pattern specifies that a class will have

only one instance throughout the program and provides a

global point of access to it [12].

Designing the objective of Patient properties and related

variables should maintain the same values across the all

classes. Considering patientAge properties value which is

required in patientDose and patientDemographics class,

whenever there is change in patientAge variable value should

reflect in referring classes. So, creating singleton class which

has variables and properties declaration and definition solved

the inconsistent values referring issue. Fig.4 shows the

singleton class we have implemented.

• cPatientPropertiesSingleton is a singleton class, which

has static method instance.

• Instance method when called first time singleton object

will be created.

Fig. 4 Class diagram for singleton design pattern

V. EVALUATIONS

The object-oriented software application is difficult to change

if it shows high coupling, low cohesion and it is difficult to

write the unit test cases. After applying the design patterns in

our working prototype, we are able to follow the design

principles in our development components. We have

conducted code analysis using NDepend tool. By finding the

abstractness metrics of the project which follows the theory

and metrics proposed by Robert C Martin [11].

To evaluate our project exhibits good range of abstractness,

NDepend tool evaluated code for stability metrics. Tool

indicates code is abstract assembly consists of many abstract

types like interfaces and abstract classes and a smaller number

of concrete types.

Fig.5 shows the abstractness vs instability graph, it detects

assemblies that are concrete and stable which indicates painful

to maintain. Assemblies that are abstract and instable indicates

potentially useless.

5.1 Abstractness (A)

The ratio of abstract types to the total number of classes. Nc

and Na indicates the number of classes and abstract types in

the project respectively. Equation (1) shows finding the

abstractness in component [12]. The value range for this

metric is 0 to 1.

 (1)

5.2 Instability (I): The ratio of efferent coupling (Ce) to total

coupling. Equation (2) is used to find the instability [12].

Basically, calculation depend on number of dependencies

component associated.

Ca (afferent couplings): The number of classes outside the

component to that depend on classes within this component.

Ce (efferent couplings): The number of classes inside this

component that depend on classes outside component.

 (2)

http://www.jetir.org/

© 2021 JETIR May 2021, Volume 8, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2105707 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f305

In the Fig.5, dotted line indicates the main sequence.

Component near to area of zone of pain is stable and concrete

i.e., very difficult to modify. Components near to zone of

usefulness is very abstract i.e., no dependents at all so it is not

useful. If the Assemblies normal distance from main sequence

is higher than 0.7, it is considered as problematic. Our case

assembly is in the desired range of distance from main

sequence.

TABLE 1

Metrics on Inpatient Pharmacy Medication Management

Project Name Parameters Values

Inpatient

Pharmacy

Medication

Management

Abstractness 0.17

Instability 1

Distance 0.12

Fig .5 Abstractness vs Instability graph

VI. CONCLUSION

This paper provides software developers with information on

the importance of design principles and design patterns and

how they can influence the overall success of object-oriented

applications. Our approach of design pattern selection process

started with understanding the design principles, next we

studied the design patterns which are indirectly helped to

achieve the “SOLID” principles as well as other design issues

we faced while developing the applications. This paper

analyses the “SOLID” design principles importance in real-

time object-oriented application and implementing three

design patterns to achieve the same and to solve the other

design issues.

REFERENCES

[1] C. Alexander, “The origins of pattern theory: The future

of the theory, and the generation of a living world,”

IEEESoftware,vol.16,no.5,pp.71–82, September/October

1999.

[2] Gamma, E., Richard Helm, Ralph Johnson and John

Vlissides,“Design Patterns: Elements of Reusable

Object-Oriented software,”Addison-Wesley, 1995

[3] W. Haoyu and Z. Haili, "Basic Design Principles in

Software Engineering," 2012 Fourth International

Conference on Computational and Information Sciences,

2012, pp. 1251-1254, doi: 10.1109/ICCIS.2012.91.

[4] M. Oruc, F. Akal and H. Sever, "Detecting Design

Patterns in Object-Oriented Design Models by Using a

Graph Mining Approach," 2016 4th International

Conference in Software Engineering Research and

Innovation (CONISOFT), 2016, pp. 115-121, doi:

10.1109/CONISOFT.2016.26.

[5] J. Braeuer, "Measuring Object-Oriented Design

Principles," 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

2015, pp. 882-885, doi: 10.1109/ASE.2015.17

[6] H. Mu and S. Jiang, "Design patterns in software

development," 2011 IEEE 2nd International Conference

on Software Engineering and Service Science, 2011, pp.

322-325, doi: 10.1109/ICSESS.2011.5982228.

[7] R.Subburaj Professor, Gladman Jekese, Chiedza Hwata,

“Impact of Object Oriented Design Patterns on Software

Development”, March 2015,International Journal of

Scientific and Engineering Research , Volume6(Issue 2),

ISSN 2229-5518

[8] J. Bräuer, R. Plösch, M. Saft and C. Körner, "A Survey

on the Importance of Object-Oriented Design Best

Practices," 2017 43rd Euromicro Conference on

Software Engineering and Advanced Applications

(SEAA), Vienna, 2017, pp. 27-34, doi:

10.1109/SEAA.2017.14.

[9] Harmeet Singh, Syed Imtiyaz Hassan, “Effect of SOLID

Design Principles on Quality of Software: An Empirical

Assessment”, International Journal of Scientific &

Engineering Research, Volume 6, Issue 4, April-2015

1321 ISSN 2229-5518

[10] F. Khomh and Y. Guéhéneuc, "Design patterns impact

on software quality: Where are the theories?," 2018

IEEE 25th InternationalConference on Software

Analysis, Evolution and and Reengineering (SANER),

2018, pp. 15-25, doi: 10.1109/SANER.2018.8330193.

[11] Agile Software Development: Principles, Patterns, and

Practices in C# Robert C. Martin (Prentice Hall PTR,

2006)

[12] R. C. Martin, Design Principles and Design Patterns,

2000. [Online]. URL: http://www.objectmentor.com

http://www.jetir.org/

